Sensing, Capturing, and Interrogation of Single Virus Particles with Solid State Nanopores

Abstract

Solid-state nanopores have gained much attention as a bioanalytical platform. By virtue of their tunable nanoscale dimensions, nanopore sensors can a spatial resolution that spans a wide range of biological species from a single-molecule to a single virus or microorganism. Several groups have already used solid-state nanopores for tag-free detection of viruses. However, no one has reported use of nanopores to capture a single virus for further interrogation by the electric field inside nanopores. In this paper we will report detection of single HIV-1 particle with solid-state nanopores and demonstrate the ability to trap a single HIV-1 particle on top of a nanopore and force it to squeeze through the pore using an electric field.

Type
Publication
SPIE Sensing Technology + Applications, 2015, Baltimore, Maryland, United States
Armin Darvish
Armin Darvish
Lead Scientist

My research interests include nanosensors, nanopores, single-molecule biophysics, bioelectronics, proteomics, genomics, bioinformatics, data science, …